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HEAT TRANSFER IN A LAYER OF LIQUID ON A ROTATING
ARCHIMEDES SPIRAL TAKING ACCOUNT OF THE ENTRANCE
REGION

I.. P. Kholpanov, N. S. Mochalova, UDC 532.526.75
V. A, Malyusov, and N. M. Zhavoronkov

The effect of the entrance region on the hydrodynamics and heat transfer in a layer of liquid on
a rotating surface is studied,

Hydrodynamics and mass transfer in a layer of liquid on a rotating Archimedes spiral in the absence of

wave formation were investigated earlier [1] by the integral relations method. In the present article we use the
work method [2] to study heat transfer in a laminar liquid film on an Archimedes spiral rotating with a constant
angular velocity w, taking account of the entrance region.

We choose the origin of coordinates in the plane of the outlet, the x axis along the flow, and the y axis

normal to it, The x, y coordinate system is fixed with respect to the streamlined solid surface, If is assumed
that the pressure gradient in the liquid layer is produced by the rotation of the spiral apparatus and that the
longitudinal rate of change of the flow parameters is much smalier than the transverse, We assume that the
thermophysical parameters are constant and that the equation of the Archimedes spiral in polar coordinates is
r=A6, where A > 0. Under these assumptions the hydrodynamics and energy equations take the form

Gu,vau F 1(3plva~u

ox oy % p ox | apr
e gL o o (1)
R(x) o 0dy Ox dy
2
u or v or 2 T 7 @)
ox oy oy
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where R(x) =A(02+1)3/2/(6%2+2); and Fy, Fy are the components of the body forces along the coordinate axes.

The body forces acting on a unit mass of the liquid film are the centrifugal force Fpoo=w R (x) and the
Coriolis force Foo=2& X V. The components of the body forces along the coordinate axes have the form

F.= R (x)cosa £ 200, F, = — R (¥)sina F 2o, (3}

where the upper signs correspond to a counterclockwise rotation of the spiral and the lower to clockwise rota—
tion. The angle o is related to the polar angle ¢ by the equations

sinae =08/} 8+ 1; cosa= 1/} L1,
The boundary conditions for Egs. (1) and (2) are
y=0 LLZO, U:O, T;:Tw

y=HE 2 _0 p=const, T=T,, @)
dy .

where the equation of the surface H(x) is determined from the solution of Egs. (1) and (2), taking account of the

kinematic condition v, =u, on the boundary surface, Introducing the dimensionless variables

X
- ' ~ ~ T—T

u=uyu, x=0,Rex, y==8,y, T= W,
Ty —T

where 5p=3w/ Re/Ga, obtained from the solution of Egs. (1) and (2) in the stabilization region in the variables
(0, y), where dx =AY 8% +1 dg, Egs. (1) and (2) and boundary conditions (4) take the form (omitting bars over
symbols)

E_5E1Re " 6—u_;~ _Oﬁ _F — ESElRe Gp 13 dtu ,
1621 00 Oy : |4 6 e a0 ay_z
, .
—E5E1-2 =Fy—~aﬂ. 6)
R (x) Ay
ESEIRe  du , 00 _,
yVee—1 o oy
E5E1Re oT oT 3 0T (6)
prm——————— u _;~ ] = e—— p
Ve—i 08 dy Pr gy
at x=0 T=0,
at y=0 u=0v=0, T=0, m
aty:ﬂ’f} éu__——_oy »QE__—_—O, T=1,
5, Oy 36
where
_ g B+ 1 6Gal/2E5!2E1
’ 022 Re ®)
2 12ER1 2 F 2
Fy=—~-?—96_'—1$6Ga E51.2E] 4
Re ©62+2 Re

We solve the problem by the method of equal flow-rate surfaces, which is related to the group of collocation
methods [2]. We introduce the lines yy =yk (x) into the flow field, and the notation

u () =ulx, g (I, v ) =vlx g @ Tp(x) =T g ).
Then vy and ug are connected by the relation

E5E1Re
Ve

which follows from the conservation of flow-rate condition and the equation of continuity. In addition, the equa-
tion of continuity is equivalent to the following system of equations:

Uy (%) Ly , 9)

U, (x) = 40

yk(i‘)
udy = const, k=2,.3, ..., N. (10)
CYpoglx)
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Evaluating these integrals by the trapezoidal rule with a uniform error estimate with respect to the variable
¢ having the third order of smallness, we obtain a system of nonlinear algebraic equations of the form

(¥ () =~ gp 1 () (g (x) + 4, (¥)) = const,, + Og. 11)

By differentiating both sides of (11) with respect to 4 we obtain a system of ordinary differential equations for
determining the surfaces of equal flow rate yi(x) '

dyy _ dYpy Y Yaoa [ ﬂh_i) ] a2)
do de Uy, \ dO do

The derivatives with respect to the independent variable 6 have the form

de, ___[ 0%y o 0 E-’i:l . Q= Uy, T (13)
dB ae (7yk dB y=yp
Substituting ‘2‘2" from (13) into (5) and (6) and using (9) we obtain
E5E1Re d E5E1 dp, op, d o,
Ty e S P — L1 Re Po  Ph ]%—3 o (14)
11 do Vo1 | do dy, do | oyt
dpy _ dpy_4 - am, (15)
do 40 ae
2
ESElRe | 4Ty _ 3 0Ty (16)
Vo1 a0 pPr 0y}
where
n
S 2
M, (8) = EsEIL'F)d;
k() J L R(O) T yl Yy
Ipa
ap, - U
R , k=23, ..., N.
3, v + ESE] R0j

To evaluate the second derivatives with respect to y in Egs. (14) and (15) we write the solution for ¢ as an
expansion in a complete set of functions

By F(x), i=1,2 ...,N, k=1,2, ..., N, v)

b=

@ (X) =

f

where
@ (%) =ty Tyyy Bi(x) = Ap Aly Fy(0) = Vi Kl

In the present paper the systems of basis functions for velocity and temperature were chosen, respectively, in
the form
S .
Vi) = (£ e |l 18)

Kl (x) = 5 ML —mn) it (19)

The orthogonal Tschebyscheff polynomials of the first kind were used also. For the velocity and temperature
these had the form

i+ 1132
Va9 = Ty ) = T O)— [Ty n) = Ty00 (L5 (20)
Kl () = Tipa () + T34 (0) (2715 —n, 1) (21)
M=y ()/H X, j=12 ..., N.

The results obtained by using different complete sets of functions did not differ appreciably, but the required
accuracy was attained with fewer terms when using the Tschebyscheff polynomials.
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We require that the values of the velocity (temperature) determined by Eq. (17) agree with ux (x) Tk (%)
on the lines yi(x). Then we obtain a system of linear algebraic equations for the coefficients Bj (x)

N ‘
@y, (x) = 2 B (x) Fij (x)- 22)
=

Determining the Bj(x) from (22) we find from (17) the derivatives of the velocity and temperature with respect
to y in Eqs. (14) and (16).

The system of nonlinear ordinary differential equations (12), (14)-(16) was solved by the Runge —Kutta
method. Since the pressure gradient in the first layer dp;/df is unknown, the right-hand sides of Eqgs. (12},
(14)-(16) were determined in two stages: 1) the pivotal coefficients were calculated and used to find dp,/d#é,
and 2) the right-hand sides were evaluated correctly. With this in mind we reduce Egs. (12), (14)-(16) to the
form

auk + L dpk +Nh dyk — th

do de dao
dy, d!/k 18, du, 4 S, duy, _, =0, 23)
do dd dao do
dpy APy + duy, T, duy, o
—_"-1k:2’31 !N’
do de % de + do h
where
2 L. 2
L =1 1 Nh—-Lh(g 88 L1 _ESEI(G —31,—'92)uz :
Uy Re 0242 82+ 1)*-
- ) o 1)3/2
R, = _j}___[]/,,GZ+1 at;h 3@ 9. ‘) } S, = — Yo,
ESEI Re ayk 92 -+ 2 uk + uh 1

ESEL(®@+2) 9 _0+1 _
e T o O F
2021 Re & 2

_ 3Ga!/2E5!/2E12
F—

Qh :Sk [(uiT uZ-—l)
L

(4 + uh_1)] — (U — Y1) X

Re
E5El(ez—?- 2)_ 3GaI/2E5UQEIZ .
Uy — 35 ’

(e“-,—l) Re
' , EBE1(82+ 2

Ty = Q-+ Uy — YoMty — Up ) "(_2‘_(—'1';3_,—2) ;

) 2, 9 ESE16(02 - 4) | 9 0* 50242
Q’*:W’*-lﬁy")[(”kfu"“) 2@—17 | Re (gu2;2 '

We write the functions being sought CZQ , 4y, . ap, in the form of pivotal relations

do do
dgy _ ., 7 _dp,
40 =% %n a8 4 (24)

where
Yy = Uy P Y5 % = U Pro Yoi o = Uy, Py, Y.

Substituting Eqs. (24) into (23) and taking account of the fact that xx and 9 k are known, we obtain explicit ex-
pressions for the pivotal coefficients in the form of the following recurrence relations:
h - [Rk - Nh (yk 17 S Uk ]) - Lh ("h h 17 TkUk—l)] (l - Lth ——Nhsk)—l’
Uk = [N,(S, Uh_1 ——Yk O+ Ly (T Uk 1 ISk_,)] (1 —L,Q, — N, S,)7%, 25)
Vi = =8V 1+ Va1 — Sl V= =80, 1+ Vi — S0,
P,=Q Py —T U — QU By =Py, — Tl —
—QU,, k=2,3,...,N.
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From the given boundary conditions

du _dy, _ dpn_ (26)

do de do

and from Egs. (23) we find the values of the pivotal coefficients for k =2. Then, using Eqs. (25), we find the
values of the pivotal coefficients for any k. In particular, for k=N '

dpx = - del
de = PN+ PN de 3
from which
dpy _(dpw N5 (27)
40 ‘( d PP

Then by a reverse pivotal we calculate the values of the right-hand sides of the system of differential equations
(24).

After determining the velocity field uy, the system of differential equations was solved for the tempera-
ture in the liquid layer by the Runge —Kutta method. We find the thermal flux on the wall of the spiral apparatus
from the equation
oy

£ 9T d ‘
H=—a|—) =-— | uTdy, 2
p(x) akay )_y:u o uTdy (28)

which is obtained after integrating the energy equation across a liquid film of variable thickness, using Eq. (9)
at the boundary. After averaging the flux over some characteristic values L we obtain*

L YN YN

1 Iy \ upb, (
= — dy = — uTd St
ﬁr L .S‘ B L ( 5‘ y/x,:Lk L (

9 0

Ty ) UL 29)

1= g, mepr L B g Repr

o/

Using the algorithm described above, the velocity field, the temperature, and the surface of separation were
calculated in the entrance region as functions of the width of the slit, the Reynolds number Re, and the dimen-
sionless characteristic of the spiral E5.

Figure 1 shows the characteristic form of the development of the velocity profile in the liquid film, and
Fig. 2 the dimensionless liguid~film thickness as a function of the dimensionless length of the spiral. These
figures show that the width of the slit has an appreciable effect on the acecelerated flow of the liquid film up to
h0/5p=7. For ho/ép > 7 the slit width has a negligible effect on the accelerated flow of the liquid film.

Figure 3 shows the surface velocity as a function of the dimensionless length of the spiral. The develop-
ment of the surface velocity follows the same rules as the development of the Hquid~film velocity [3]. Figure
4 gives the characteristic form of HT? as a function of the dimensionless length of the spiral for various values
of the hydrodynamic parameters. These figures show that larger values of E1, E5, Re and Pr correspond to
larger values of HTZ,

The value of HT? is approximated within 10% in the range of parameters investigated by the expression
HT? = (3.9--0.75E1--0.9E5--0.001 Re + 0.007 Pr) x + 0.005E1. (30)

The expression for the average coefficient of heat transfer from the liquid film to the wall of the spiral heat-
transfer apparatus, taking account of (30), has the form

1/2 o172
u/*a

T l//3.9+0.75E1-{—O.955-§~0.001Re+0.007pr +4- 0.005 —ﬁﬁf’z—lie—g{ .

Br = 31)
Table 1 compares the results calculated by the two methods for E1=1, E5=0.5, Pr=10, h4=0.3 cm, L=
100 cm, and v =1072 cm?/sec; single and double primes denote, respectively, values for the integral-relations
method and for the method presented, where
*In certain cases it is convenient to solve the energy equation by using the dimensionless longitudinal coordi-
nate in the form x =5 pRePrx. Then the small parameter in the energy equation disappears for the higher
derivative.
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TABLE 1

ke o By
50 25,25 14,75 1,05
100 30,5 20,5 1,128
300 51,5 43,5 1,303
500 72,5 66,5 1,439
1000 125 124 1,731
I b g%
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Fig. 1. Dimensionless velocity as a function of the trans-
verse coordinate for E5=0.1 and H1 =3; a) Re=100; b) Re =
500.
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Fig. 2. Dimensionless thickness of liquid film as a function of dimensionless length
of spiral: a) Re=300; E5=0.,1; 1) H1=0.5; 2) 1; 3) 1.5; 4) 3; 5) 7; 6) 10; b) E5=0.1;
H1=3; 1) Re =500; 2) 300; 3) 100; ¢) Re =300; H1=3; 1) E5=1; 2) 0.5; 3) 0.1.

Fig. 3. Dimensionless surface velocity as a function of dimensionless length of
spiral: a) Re=300; E5=0.1; 1) H1=10; 2) 7; 3) 3; 4) 1.5; 5) 1; b) E5=0.1; H1 =3; 1)
Re =100; 2) 300; 3) 500; ¢c) Re=300; H1=3; 1) E5=0.1; 2) 0.5; 3) 1.
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Fig. 4. HT? as a function of dimensionless length of spiral: a)
Re=100; E5=0.1; E1=0.1; 1) Pr=10; 2) 30; 3) 100; b) Re = 100;
E5=0.1; Pr=30; 1) E1=0.1; 2) 0.4; 3) 1; 4) 1.6; ¢) Re=100; E1=
0.1; Pr=30; 1) E5=0.1; 2) 0.5; 3) 1; d) E5=0.1; E1=0.1; Pr =
30; 1) Re=100; 2) 500; 3) 1000.

= 9
%) = {(0.08E1-0.025) Re -+ 15E1+3] Ag; x] == [(0.0955 4+ 0.07)Re - 541'25 j 8;

Bav ﬁm m

As can be seen from the table, there is a difference in the calculated values of 8. This difference can be ac-
counted for in the following way.

In the integral-relations method [1] the basis functions were second-orderpolynomials, while in the pro-
posed method they were N-th-order (N =10) orthogonal polynomials. These N-th-orderpolynomials canmore
accurately trace the complex variations of all the hydrodynamic parameters (velocity, film thickness) in the
entrance region. In the integral-relations method a parabolic velocity profile is specified a priori, i.e., the
profile which occurs in the stabilization region, and the termination of the calculation was determined solely
by the degree of approximation of the film thickness. In the proposed method the termination of the calcula-
tion, and consequently also the entrance length x, depend on the degree of approximation of the values of both
the surface velocity and the film thickness in the stabilization region. This caused the difference in the calcu-
lated values of xj (Table 1).

Since the dimensionless size of the active region X =x/5Re decreases with increasing Re (Fig. 1), i.e.,the
velocity profile is shaped in the smaller dimensionless part, further difficulties arise in describing the defor-
mation of the velocity-profile by the integral-relations method, and consequently the difference in the results
calculated by the two methods is increased. This is actually the case (Table 1). Moreover, the calculated
values agree up to Re =100.

NOTATION

a , thermal diffusivity; v, viscosity; p, density; hy, initial thickness of liquid film; A, characteristic of
spiral; R(x), radius of curvature of spiral; «, angle between positive direction of tangent to spiral and radius
vector to point under consideration, calculated from the expression tana =r(6)/r'(8); Ty, Tt, temperatures at
wall of spiral and at film surface, respectively, H(x), equation of surface determined from solution of problem;
p(x, ¥), hydrostatic pressure; x = A(6f92+1 +In| 6 + v 62+1]/2, running length of spiral; E5=hy/A, ltS dimen-
sionless characteristic; Re =3q/v, modified Reynolds number; Ga =w ’Ah3/»?, Galileo number, E1 =¥ Re/Ga =
8/hy, ratio of thickness of boundary layer to initial thickness; H1= ho/é ratio of initial thickness of liquid film
to running thickness; xy, entrance length.
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